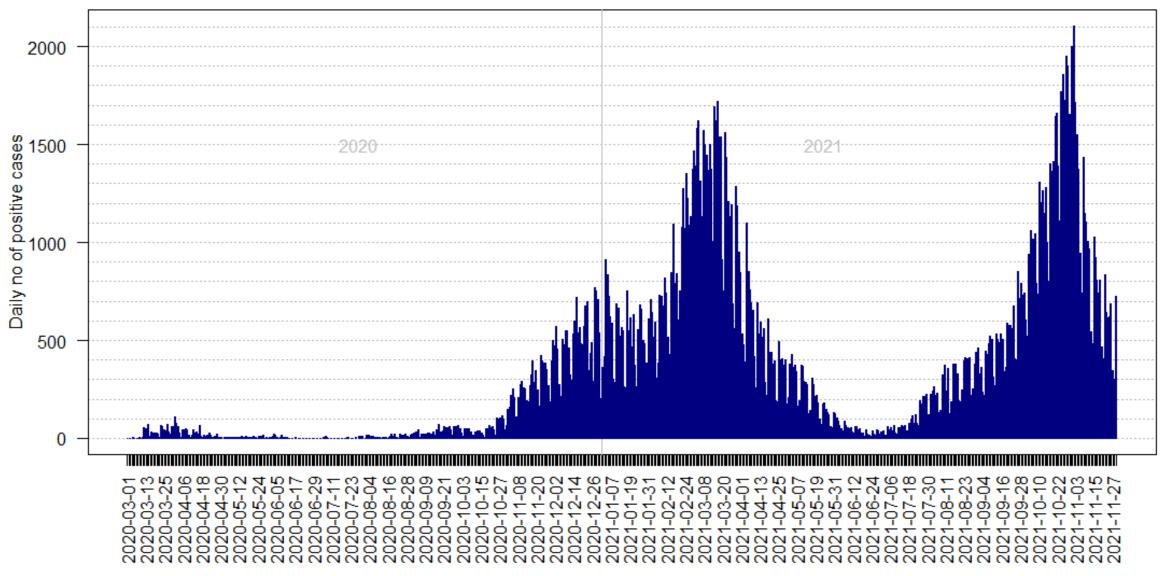

Scientific advice during Covid-19 pandemic in Estonia: combining local data with global knowledge

Krista Fischer

PROFESSOR OF MATHEMATICAL STATISTICS INSTITUTE OF MATHEMATICS AND STATISTICS INSTITUTE OF GENOMICS MEMBER OF THE ESTONIAN ACADEMY OF SCIENCES

- Some history:
- Feb 26th 2020: first Covidpositive case in Estonia
- First local transmissions: around the second week of March 2020
- Covid-19 Scientific council formed by the Government of Estonia: from March 20th


prof. Irja Lutsar prof. Andres Merits prof. Krista Fischer prof. Peep Talving dr. Pilleriin Soodla ass.prof. Andero Uusberg (from Jan 2021) dr. Kristi Rüütel (until Dec 2020)

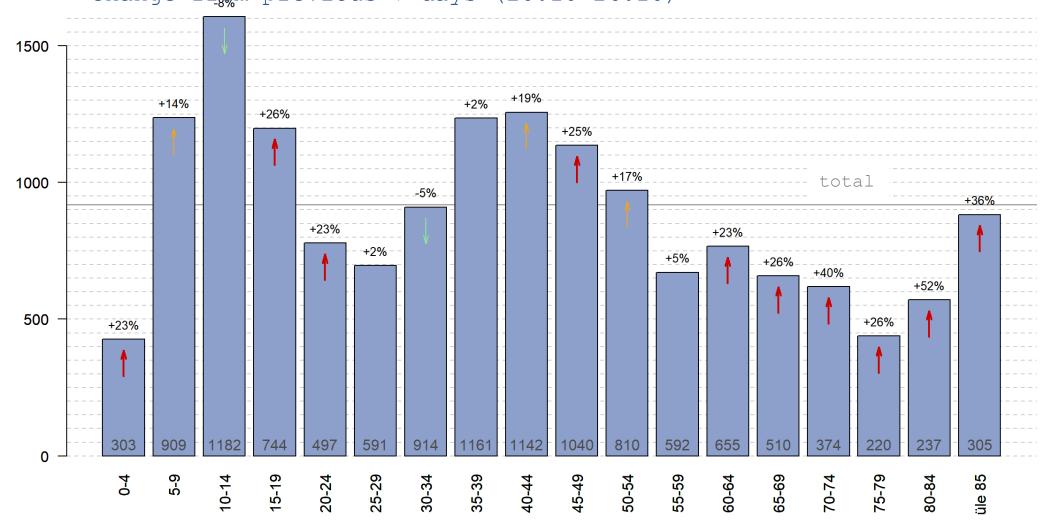
Data analytic tasks to support political decision-making:

- Nowcasting accurate overview of the current situation
 - New infections
 - Hospitalization
 - Deaths
 - Regional view
 - Infections in agegroups
 - Time trends
 - Absolute and relative measures
 - Vaccinations and vaccine effect
- Forecasting
 - Potential trends in new infections
 - Need for hospital and critical care beds
 - Mortality predictions

Estonia: daily no of cases, March 2020 - Nov 30th, 2021

Important points for science-based crisis-communication

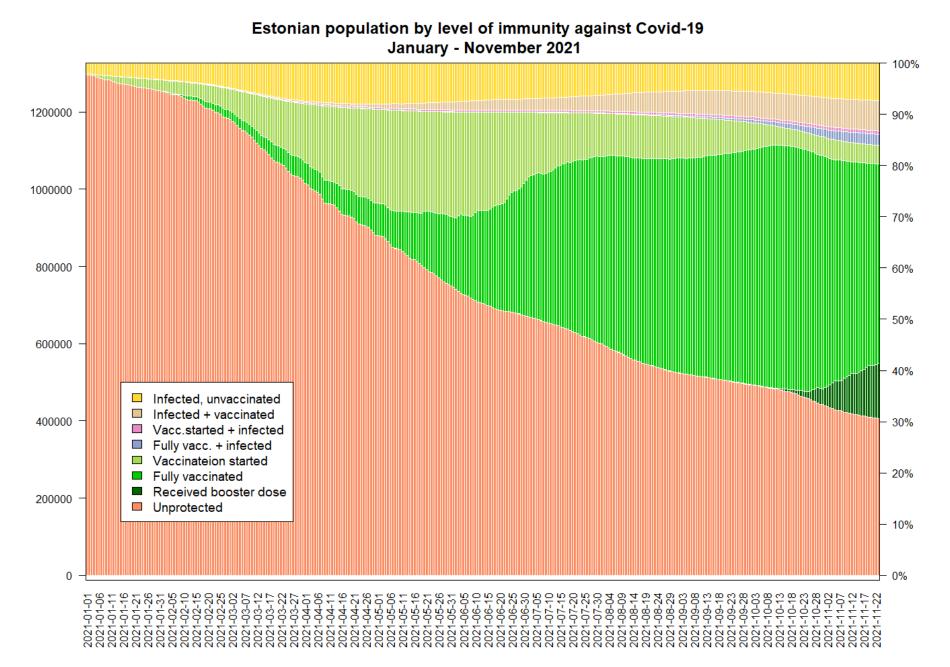
- The message needs to be short and clear
- Importance of good visualization!
- Dilemmas:
 - Decision-making is binary, scientific arguments include uncertainty
 - Scientific knowledge is constantly changing, scientists do not agree in every detail very hard to communicate to decision-makers and general public
 - Communication with politicians and with media, also with politicians via media a lot of "broken telephone" effects
 - Predictive models and "what-if" scenarios (scenarios avoided by actions -> models were "wrong")
 - How to communicate with "alternative views" (anti-vax and others)?

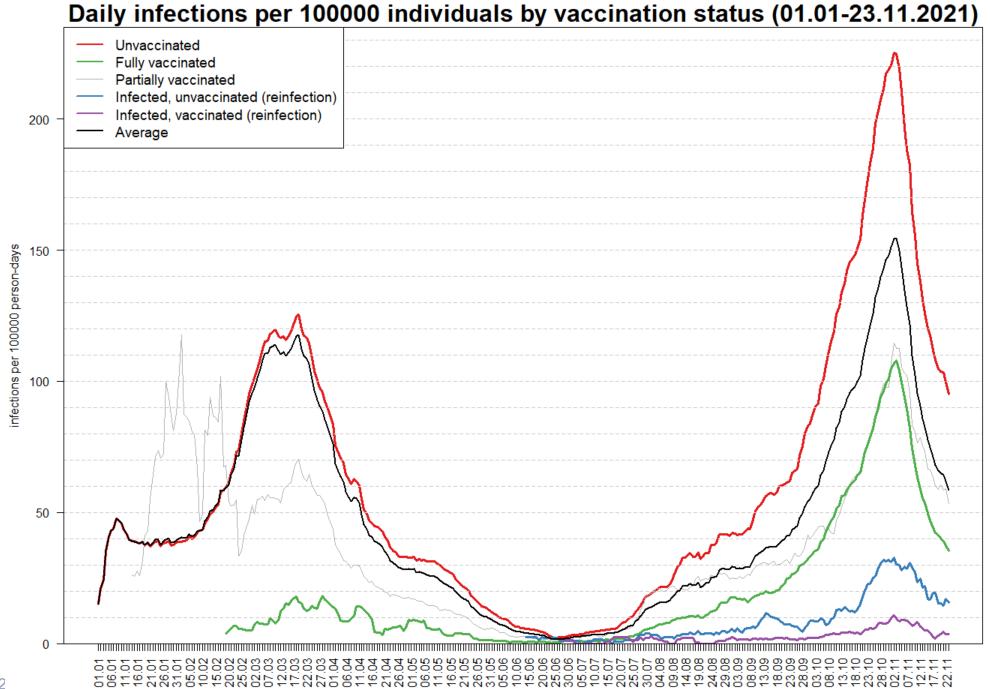

Age structure through time

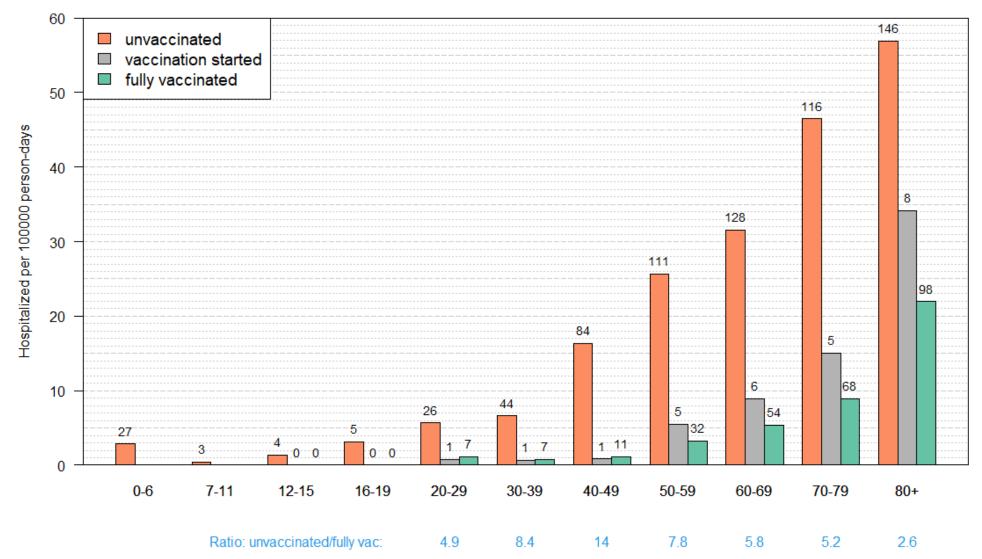
Age distribution of infected individuals

Age:

week

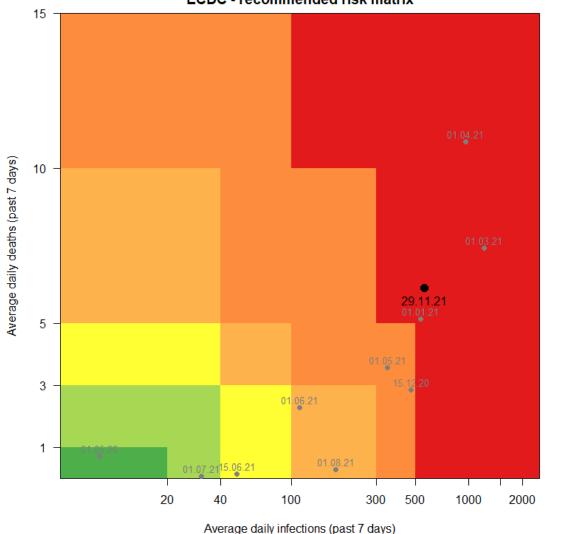

```
7-day infection rate by 100000 individuals in the age
group 27.10-02.11.2021,
change from previous 7 days (20.10-26.10)
```

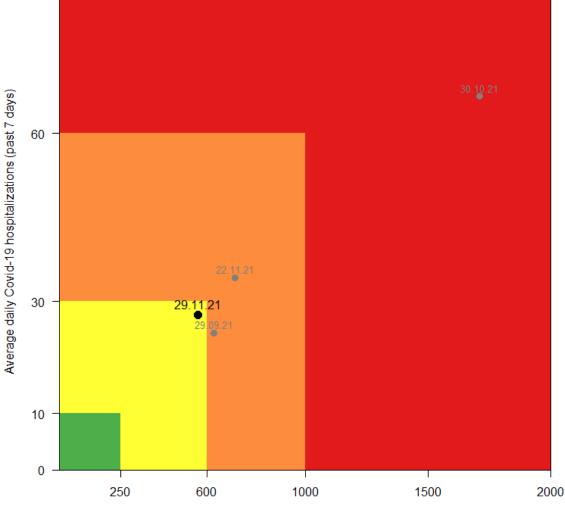



Bringing together age groups and regions (counties): percentage infected in October 2021

		0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	62-69	70-74	75-79	80-84	üle 85		- 10.2
Population 24000	→ Põlva maakond (1294)	2.8	9.7	10.1	6.9	3.3	4.7	6.5	7.2	7.4	5.5	5.6	3.4	4.2	3.6	3.2	3.6	3	3.9		- 10.2
	Pärnu maakond (3995)	1.6	6.9	10.2	4.5	4.2	4.7	6.5	7.5	7.1	5.6	4.1	3.4	3.4	2.8	2.1	1.3	1.7	2.5		- 9.18
	Viljandi maakond (1811)	0.9	5.3	9.5	3.9	3.4	4.2	4.6	6.8	4.4	5.2	4.1	3.5	3.5	2.7	1.7	1.5	1.4	2		8.16
	Võru maakond (1337)	1.2	4.1	6.3	5.6	3	3.8	4.2	5.7	5.7	4.1	3.9	3.4	3.8	3.1	2.5	1.8	2	3		
	Järva maakond (1090)	1.7	5.8	6.9	4.8	3.1	3.3	4.1	4.8	4.7	4.3	3.2	3.2	2.3	2.3	2.3	2.4	2.7	4.5		- 7.14
	Lääne-Viru maakond (1995)	2	4.8	6.3	3.5	3	3.1	4.5	4.8	4.4	3.7	4	2.9	3	2.6	1.4	1.5	1.7	2		- 6.12
	Valga maakond (931)	1.4	5.3	4.8	4.4	2.5	2.8	4.8	3.8	5.1	4	3.8	3.4	2.8	2.4	1.8	1.4	1.8	1.9		- 0.12
	Rapla maakond (1048)	1.6	3.9	7.5	3.4	4.1	3.8	3.9	4	4.6	3.7	2.5	2.1	1.8	1.7	1.4	1.1	1.9	1.2		- 5.1
	Jõgeva maakond (840)	1.6	5.5	5.7	3.8	2.9	3.2	4.2	3.7	4	2.7	2.9	2.3	2.7	1.4	1.3	1.5	2.6	2.7		- 4.08
Population 154000	→ Tartu maakond (4592)	1.6	4.9	6.5	2.6	2	2.8	3.2	4.1	4.1	3.4	2.7	2.3	2.3	1.8	1.3	0.8	1.1	2.2		- 4.08
	lda-Viru maakond (3766)	1.7	3.3	6.9	4.5	2.8	2.7	3.2	4	4.1	3.2	2.9	2.1	2.1	1.9	1.7	1.2	1.3	1.6		- 3.06
Population 609000	→Harju maakond (15993)	1	3.7	5.6	3.4	1.9	2.2	2.5	3.4	3.5	3	2.6	2.1	2	1.7	1.5	1.2	1.2	2		2.04
	Lääne maakond (466)	0.6	4.6	4.4	1.6	2	2.4	3.2	3.8	3	3.4	2.2	1.4	1.3	1.4	1.6	0.6	1.1	2.1		- 2.04
	Saare maakond (488)	0.2	1.4	2.7	2.4	1.7	1.5	2	3	1.6	1.5	1.4	1.1	0.9	0.9	0.6	0.6	1.4	1.6		- 1.02
Population 9000	→ Hiiu maakond (120)	0.3	0.9	1.2	1.5	1.4	2.6	2.5	2.3	1.9	2.2	1.3	0.8	0.5	0.5	0.5	0.3	0.3	0		- 0

Vaccination

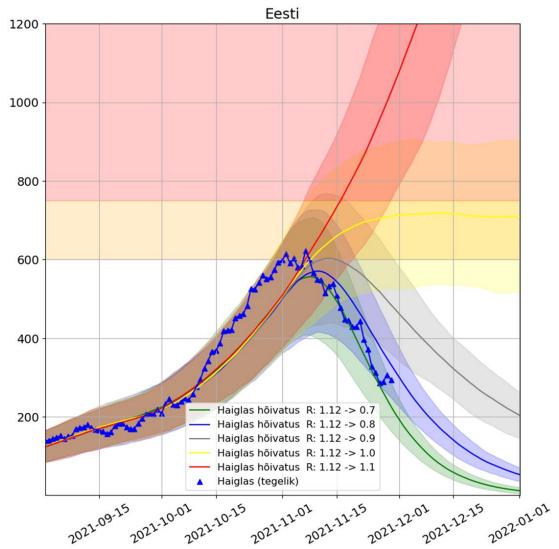



Hospitalizations due to Covid-19 in 01.09.2021-17.10.2021 per 10000 person-days by vaccination status

Risk matrices as aid for decision-making: infections vs deaths infections vs hospitalizations

ECDC - recommended risk matrix

New risk matrix (from 10.09.2021)



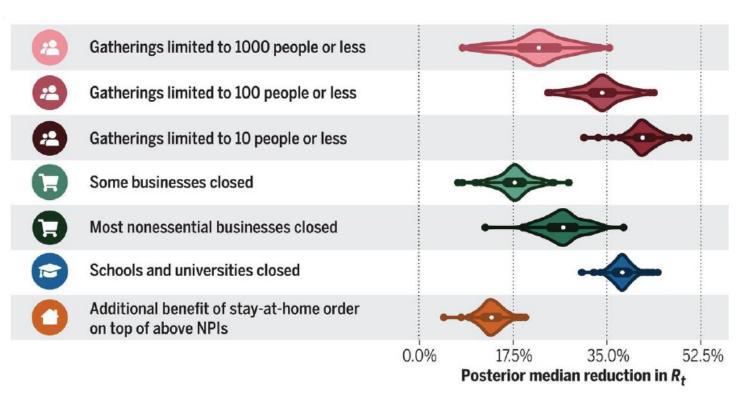
Average daily infections (past 7 days)

Predictive models for hospitalization – a Monte-Carlo based approach (with Mario Kadastik)

Model for hospital occupancy:

Effect of mitigation measures?

Inferring the effectiveness of government interventions against COVID-19

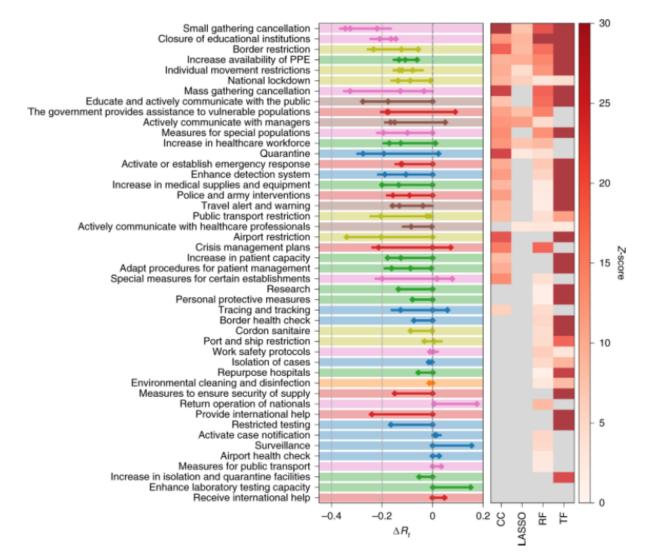

💿 Jan M. Brauner^{1,2,*,†}, 💿 Sören Mindermann^{1,*,†}, 💿 Mrinank Sharma^{2,3,4,*,†}, 💿 David Johnston^{5,6}, 💿 John Salvatier⁶, 💿...

+ See all authors and affiliations

RESEARCH ARTICLE

Science 19 Feb 2021: Vol. 371, Issue 6531, eabd9338 DOI: 10.1126/science.abd9338

https://science.sciencemag.org/content/371/6531/eabd9338


https://www.nature.com/articles/s41562-020-01009-0

Article | Published: 16 November 2020

Ranking the effectiveness of worldwide COVID-19 government interventions

Nils Haug, Lukas Geyrhofer, Alessandro Londei, Elma Dervic, Amélie Desvars-Larrive, Vittorio Loreto, Beate Pinior, Stefan Thurner & Peter Klimek 🖂

Nature Human Behaviour 4, 1303-1312(2020) Cite this article

Summary

- Scientific communication during the Covid-19 crisis has proven to be challenging and very different from what most of the scientists had been used to before
- More international collaboration is needed not only in data analysis and sharing, but also in sharing efficient communication strategies
- There is always something good in an unfortunate situation scientists have received much more public attention and appreciation than before

Thank you!

Irja Lutsar, Andres Merits, Peep Talving, Pilleriin Soodla, Andero Uusberg, Kristi Rüütel,

Mario Kadastik, Jaak Vilo (& team), Meelis Käärik, Ene-Margit Tiit, Jaak Sõnajalg, Kristjan Vassil, Mikk Jürisson and many other colleagues

f tartuuniversity

Krista.Fischer@ut.ee

